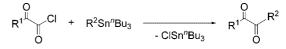


Synthesis of 1,2-Diketones by the Transition Metal-Catalyst-Free Reaction of α-Oxo Acid Chlorides or Oxalyl Chloride with Organostannanes

Taigo Kashiwabara and Masato Tanaka*

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

m.tanaka@res.titech.ac.jp


Received December 27, 2008

$$CI \xrightarrow{O}_{O} CI \xrightarrow{R^{2} \cdot Sn^{n}Bu_{3}}_{O} \xrightarrow{O}_{O} R^{2}$$

The reaction of an α -oxo acid chloride with an organostannane proceeds transition metal-catalyst-free to afford a 1,2diketone in an excellent yield. In addition, a sequence comprising pretreatment of oxalyl chloride with an organostannane and a subsequent treatment with another organostannane also works as a convenient modification.

Electrophilic substitution at an aryl-Sn bond is a well-known process.¹ For instance, the AlCl₃-catalyzed reaction of arylstannanes with acid chlorides affords aryl ketones in high yields.² Ketone synthesis by transition metal-catalyzed cross-coupling of acid chlorides with organostannanes is also well studied since the pioneering work by Kosugi-Migita³ and also that by Stille-Milstein.⁴ The Stille-Milstein procedure using a palladium complex catalyst was also applied to the synthesis of 1,2-diketones starting with acyl chlorides and acylstannane reagents, although the reaction required long heating at high temperatures, resulting in only moderate yields.⁵ On the other hand, one of us reported near-quantitative synthesis of α -oxo nitriles⁶ and α -oxo amides⁷ by the reactions of Bu₃Sn-CN and Me₃Sn-CONⁱPr₂ with acid chloride derivatives, which work

SCHEME 1. Transition Metal-Catalyst-Free 1,2-Diketone Synthesis Starting with α-Oxo Acid Chloride and Organostannane

catalyst-free under much milder reaction conditions (rt ~75 °C, less than 1 h in most cases). Besides these, when the Sn-C bond is somehow activated by an α -heteroatom, the crosscoupling appears to proceed catalyst-free. Thus, the reaction with (a-sulfonylcyclopropyl)stannane and (a-sulfonylvinyl)stannane reagents affords corresponding α -sulfonylcyclopropy and α -sulforylvinyl ketones in fair to high yields.⁸ α -Stannylpyridines and α -stannylpyrimidines are also reactive under catalyst-free and exceptionally mild conditions toward acyl chlorides to furnish corresponding heterocyclic ketones.9 However, similar reactions of α -oxo acyl chlorides with α -stannylpyridines and α -stannylpyrimidines do not afford diketones selectively, but also form the "mono" ketones, due to concomitant decarbonylation, which is believed to stem from the participation of α -nitrogen. The only catalyst-free cross-coupling of simple organostannane compounds appeared quite recently and disclosed the necessity of harsh conditions (130 °C, up to 90 h) and only moderate yields being obtained.¹⁰

During the course of our research on the transition metalcatalyzed reactions of α -oxo acid chlorides, we have come accidentally across high-yielding formation of 1,2-diketones in the reaction with organostannane compounds in the absence of a transition metal catalyst (Scheme 1), which will be disclosed in this note. There are quite a few synthetic methodologies for simple 1,2-diketones (vide infra),¹¹ but synthesis of alkenyl and alkynyl 1,2-diketones has been very limited.¹²

In a representative experiment, a toluene solution of phenyl-2-oxoacetyl chloride 1a and tri-n-butyl(allyl)stannane 2A was stirred at 110 °C for 3 h. Routine workup of the resulting mixture, inclusive of treatment with aqueous potassium fluoride to convert chlorotri-n-butylstannane coproduct to an insoluble polymeric material, followed by preparative TLC afforded 1-phenylpent-4-ene-1,2-dione 3aA in 96% isolated yield. The product showed satisfactory spectral data.

Interestingly, when a trial reaction of **1a** with **2A** (1 equiv) was run, according to the Migita-Kosugi procedure with RhCl(PPh₃)₃ (2.0 mol %) at 80 °C for 3 h, the desired diketone was not formed in an appreciable yield, and instead, 1-phenyl-

^{(1) (}a) Davies, A. G. Organostannane Chemistry; VCH: Weinheim, Germany, 1997; Chapters 4 and 6. (b) Wardell, J. L. In Chemistry of Tin, 2nd ed.; Smith, P. J., Ed.; Chapman & Hall: London, UK, 1998; Chapter 4 and references cited therein

⁽²⁾ Neumann, W. P.; Hillgärtner, H.; Baines, K. M.; Dicke, R.; Vorspohl, K.; Kobs, U.; Nussbeutel, U. Tetrahedron 1989, 45, 951.

⁽³⁾ Kosugi, M.; Shimizu, Y.; Migita, T. J. Organomet. Chem. 1977, 129 C36.

⁽⁴⁾ Milstein, D.; Stille, J. K. J. Org. Chem. 1979, 44, 1613.

⁽⁵⁾ Verlhac, J.-B.; Chanson, E.; Jousseaume, B.; Quintard, J.-P. Tetrahedron Lett. 1985, 26, 5997. See also: Kosugi, M.; Naka, H.; Harada, S.; Sano, H.; Migita, T. Chem. Lett. 1987, 16, 1371.

 ⁽⁶⁾ Tanaka, M. *Tetrahedron Lett.* **1980**, *21*, 2959.
 (7) Hua, R.; Takeda, H.; Abe, Y.; Tanaka, M. J. Org. Chem. **2004**, *69*, 974.

⁽⁸⁾ Pohmakotr, M.; Khosavanna, S. Tetrahedron 1993, 49, 6483.

^{(9) (}a) Yamamoto, Y.; Ouchi, H.; Tanaka, T. Chem. Pharm. Bull. 1995, 43, 1028. (b) Yamamoto, Y.; Ouchi, H.; Tanaka, T.; Morita, Y. Heterocycles 1995, 41, 1275.

⁽¹⁰⁾ Silbestri, G. F.; Masson, R. B.; Lockhart, M. T.; Chopa, A. B. J. Organomet. Chem. 2006, 691, 1520.

^{(11) (}a) Krongauz, E. S. Russ. Chem. Rev. 1977, 46, 59. (b) Shi, Q.-A.; Wang, J.-G.; Cai, K. Youji Huaxue 1999, 19, 559. (c) Mosnacek, J.; Lukac, I. Chem. Listy 2005, 99, 421. (d) Landais, Y.; Vincent, J. M. Sci. Synth. 2005, 26, 647.

^{(12) (}a) Leyendecker, J.; Niewihner, U.; Steglich, W. Tetrahedron Lett. 1983, 24, 2375. (b) Ahmad, S.; Iqbal, J. J. Chem. Soc., Chem. Commun. 1987, 692. (c) Katritzky, A. R.; Lang, H. J. Org. Chem. 1995, 60, 7612. (d) Katritzky,
 A. R.; Wang, Z.; Lang, H.; Feng, D. J. Org. Chem. 1997, 62, 4125. (e) Lee, J. C.; Park, H.-J.; Park, J. Y. Tetrahedron Lett. 2002, 43, 5661. (f) Habel, L. W.; De Keersmaecker, S.; Wahlen, J.; Jacobsa, P. A.; De Vos, D. E. Tetrahedron Lett. 2004, 45, 4057.

but-3-en-1-one (11%) and 1-phenylbut-2-en-1-one (7%; the E/Z ratio was ca. 2/1) were formed.¹³ Likewise, another RhCl(PPh₃)₃catalyzed reaction (80 °C for 5 h) of 1a with (phenylethynyl)tri*n*-butylstannane **2D**, which is one of the most reactive stannane reagents in transmetalation chemistry,¹⁴ also failed to give the desired 1,4-diphenylbut-3-yne-1,2-dione, ending up with the formation of diphenylacetylene (5%) and 1,4-diphenylbutadiyne (34%). In contrast to these, a control experiment with **1a** and 2A run in the absence of the catalyst at 80 °C for 3 h afforded the desired diketone 3aA in 54% yield. These experiments indicate that the rhodium complex promotes the reaction rapidly, but in an undesired direction.

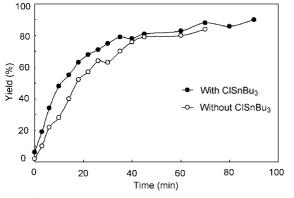
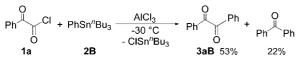



FIGURE 1. Time-course of the reaction of 1b with 2B in the absence (O) or presence (\bullet) of chlorotri-*n*-butylstannane monitored by ¹H NMR spectroscopy.

Another aspect that merits consideration is the possible role of the coproduced chlorotri-n-butylstannane as a Lewis acid catalyst. The time-course of the reaction of p-anisyl-2-oxoacetyl chloride **1b** and phenyltri-*n*-butylstannane **2B** (1 equiv) run at 80 °C in toluene- d_8 did not display a clear sigmoidal increase of the yield of 1-(p-anisyl)-2-phenylethanedione 3bB, which should have been seen in an autocatalytic reaction (Figure 1). However, the same reaction run in the presence of a catalytic quantity of chlorotri-*n*-butylstannane (10 mol %) was distinctly faster, in particular in the early stages, suggesting that chlorotri*n*-butylstannane does work as a catalyst, albeit weakly.

SCHEME 2. Aluminum Chloride-Catalyzed Reaction of Phenyl-2-oxoacetyl Chloride with Phenyltri-n-butylstannane

To gain a rough estimate of the catalytic activity of chlorotri*n*-butylstannane relative to trichloroaluminum, we ran a reaction of phenyl-2-oxoacetyl chloride 1a with phenyltri-n-butylstannane 2B (1 equiv) in the presence of trichloroaluminum (10 mol %) in dichloromethane (2 mL) at -30 °C for 3 h (Scheme 2). Analysis of the mixture by GC revealed the formation of benzil **3aB** in 53% along with benzophenone (22%). The result indicates that trichloroaluminum promotes the reaction as a powerful Lewis acid even at a low temperature, but the benzophenone formation via decarbonylation is a serious drawback.

The new methodology described in the representative experiment appears quite general, irrespective of the structure of α -oxo acid chlorides and organostannane compounds as summarized in Table 1. Thus, besides the allylstannane 2A already men-

TABLE 1. Reaction of α-Oxo Acid Chloride 1 with Organostannane 2⁴

8							
	R ¹ CI +	R ² SnBu ₃ ————	$ R^1 \overset{O}{\underset{O}{\overset{\square}{\overset{\square}{\overset{\square}{\overset{\square}{\overset{\square}{\overset{\square}{\overset{\square}{\overset$				
entry	1 , $R^2 =$	2 , $R^2 =$	product, yield $(\%)^b$				
1	1a , Ph	2A , allyl	3aA , (96)				
2	1a	2B, Ph	3aB , 99 ^c (95)				
3	1a	2C , vinyl	3aC, quant				
4	1a	2D, phenylethynyl	3aD, quant (93)				
5	1a	2E, benzyl	3aE , 88				
6	1a	2F , <i>n</i> -Bu	3aF , 98				
7	1b , <i>p</i> -MeOC ₆ H ₄	2B	3bB, quant				
8	1c , <i>p</i> -ClC6H ₄	2B	3cB , 97				
9	1d , C ₆ F ₅	2B	3dB , 98^d				
10	1e, 2-thienyl	2B	3eB, quant				
11	1f, Me	2B	3fB , 97 ^c				

^a Reaction conditions: a mixture of 1 (0.5 mmol), 2 (0.5 mmol), and toluene (3 mL) was stirred for 3 h at 110 °C. ^b Determined by ¹H NMR spectroscopy with 1,1,2,2-tetrachloroethane as an internal standard. The numbers in parentheses are isolated yields. ^c Determined by GC with *n*-tetradecane as an internal standard. ^d Determined by ¹⁹F NMR spectroscopy with hexafluorobenzene as an internal standard.

tioned, phenyl-, vinyl-, ethynyl-, and benzylstannanes 2B-E all reacted smoothly with 1a, affording near-quantitative yields of corresponding 1,2-diketones. More amazing is that even tetra*n*-butylstannane 2F, which is envisioned to be least reactive in electrophilic substitution,^{1b,14} does react without any difficulty, ending up with a near-quantitative yield. Since the reactivity of phenyltri-n-butylstannane 2B is so high, the substituentdependent difference in reactivity is not evident as far as substituted phenyl-2-oxoacetyl chlorides 1b-d are concerned. The reaction of heteroaromatic (1e) and aliphatic (1f) α -oxo acid chlorides also proceeds as well, thus proving that the reaction offers a straightforward and general methodology for the synthesis of various 1,2-diketones. Note that, although the reaction listed in Table 1 was run for 3 h, a long duration of the reaction may not be required, depending on the combination of 1 and 2, as the time-course experiment with 1b and 2B (vide supra) suggests.

We have also attempted the reaction of **1a** with (trimethylsilyl)tri-n-butylstannane (100 °C, 3 h), aiming at the synthesis of either 1-phenyl-2-(trimethylsilyl)ethane-1,2-dione or 1-phenyl-2-(tri-n-butylstannyl)ethane-1,2-dione.^{15,16} However, none of these were formed at all and both starting materials remained unchanged. Likewise the reaction with hexa-nbutyldistannane did not form stannyl diketone either, although a trace of chlorotri-n-butylstannane was detected in the resulting mixture.

Downloaded by Jonathan Berry on September 10, 2009 | http://pubs.acs.org Publication Date (Web): April 9, 2009 | doi: 10.1021/jo802814r

⁽¹³⁾ Other unidentified byproducts were also formed. Although Kosugi and co-workers reported higher yields for the RhCl(PPh₃)₃-catalyzed reaction (40 °C) of simple acid chlorides with 2A, use of a large excess of acid chlorides appears prerequisite for the high yield, which may be associated with the decarbonylation of acid chlorides. See ref 3.

⁽¹⁴⁾ Davies, A. G. Organostannane Chemistry; VCH: Weinheim, Germany, 1997; p 58.

⁽¹⁵⁾ Simple acid chlorides are known to form silvl ketones when treated with a disilane in the presence of palladium catalysts. See: (a) Eaborn, C.; Griffiths, R. W.; Pidcock, A. J. Organomet. Chem. 1982, 225, 331. (b) Ricci, A.; Degl'Innocenti, A.; Chimichi, S.; Fiorenza, M.; Rossini, C. J. Org. Chem. 1985, 50, 130. (c) Yamamoto, K.; Hayashi, A.; Suzuki, S.; Tsuji, J. Organometallics 1987, 6, 974. Similar reaction with a distannane affords stannyl ketones. See: (d) Mitchell, T. N.; Kwetkat, K. J. Organomet. Chem. 1992, 439, 127.

⁽¹⁶⁾ In transmetalation between (trimethylsilyl)tri-n-butylstannane (Si-Sn) and an organopalladiumhalide complex (R-Pd-X), formation of both R-Pd-Si and R-Pd-Sn appears possible, depending on the particular structure of the complex. See: (a) Mori, M.; Kaneta, N.; Shibasaki, M. J. Org. Chem. 1991, 56, 3486. (b) Obora, Y.; Tsuji, Y.; Kawamura, T. J. Am. Chem. Soc. 1995, 117, 9814.

- 2 PhSnBu ₃ - 2B	toluene, 1	10 °C, 5		COCOPh 3aB 89%
2B slow addition	PhCOCO 1a) (I)		
R in	² SnBu ₃ 2X one portion			⊨ + 3aB
	2X		3aX	3aB
Ph	C≡CSnBu₃	2D	78%	14%
~	∽SnBu₃	2A	76%	17%
H ₂ C	C=CHSnBu	3 2C	74%	10%
Sn	Bu ₄	2F	71%	14%
	2B 2B slow addition $\frac{R}{in}$ Pho H ₂ C	2B toluene, 1 2B PhCOCC slow addition 1a $R^2SnBu_3 2X$ in one portion 2X PhC=CSnBu_3 \sim SnBu_3	2B toluene, 110 °C, 5 2B [PhCOCOCI] slow addition 1a $R^2SnBu_3 2X$ R^2C in one portion R^2C 2X PhC=CSnBu_3 2D \sim SnBu_3 2A H_2C=CHSnBu_3 2C	$\begin{array}{c} 2B \\ \hline 2B \\ \hline 2B \\ \hline slow addition \\ \hline 1a \\ \hline \\ R^2SnBu_3 2X \\ \hline in one portion \\ \hline \\ 3aX \\ \hline \\ \hline \\ 2X \\ \hline \\ SnBu_3 2D \\ R^2COCOPh \\ \hline \\ 3aX \\ \hline \\ R^2COCOPh \\ \hline \\ 3aX \\ \hline \\ R^2COCOPh \\ \hline \\ 3aX \\ \hline \\ R^2COCOPh \\ \hline \\ $

SCHEME 3. 1,2-Diketone Synthesis Starting with Oxalyl Chloride

Encouraged by the high-yielding synthesis of 1,2-diketones, we assumed that oxalyl chloride 4 could form 1,2-diketone when treated with organostannanes, which indeed turned out to be a convenient modification in two directions. One is the synthesis of symmetrical diketone, as exemplified by the synthesis of benzil as shown in Scheme 3 (top). Heating a toluene solution of 4 and 2 equiv of phenyltri-n-butylstannane 2B at 110 °C for 5 h gave benzil **3aB** in 89% GC yield. In the other (Scheme 3, bottom), to a toluene solution of 4 was added a toluene solution of phenyltri-n-butylstannane 2B (1 equiv) at 60 °C, slowly by using a syringe pump. After heating for another 2 h, (phenylethynyl)tri-n-butylstannane 2D (1 equiv) in toluene was added in one portion to the resulting mixture and the mixture was further heated for 3 h. GC analysis revealed the formation of 1,4-diphenylbut-3-yne-1,2-dione 3aD (78% GC yield) along with benzil 3aB (14% GC yield). Similar reactions with allyltri*n*-butylstannane **2A**, vinyltri-*n*-butylstannane **2C**, and tetra-*n*butylstannane 2F in place of 2D also furnished corresponding 1,2-diketones (3aA, 3aC, and 3aF) in 71-76% yields, together with benzil **3aB**. These reactions suggest that α -oxo acid chlorides 1, synthesis of which occasionally requires tedious multistep processes, including the preparation of α -oxo acids¹⁷ and subsequent chlorination,18 using toxic reagents, can be generated rather cleanly. To substantiate the suggestion, a toluene solution of phenyltri-n-butylstannane 2B was added at 70 °C slowly over a period of 2 h by using a syringe pump to a toluene (5 mL) solution of oxalyl chloride 4 (1 equiv) and the mixture was heated for another 2 h. Analysis by GC revealed the formation of phenyl-2-oxoacetyl chloride **1a** in 76% yield. This in situ generation of α -oxo acid chloride is also of great synthetic value in its own right.

To summarize we have developed a transition metal-catalystfree coupling of α -oxo acyl chlorides with organostannanes, which serves as a general, simple, and high-yielding methodology to synthesize 1,2-diketones. An easy synthesis of α -oxo acyl chlorides has also been made possible via coupling of oxalyl chlorides with organostannanes. 1,2-Diketones are useful as medicinally active compounds.¹⁹ They are also versatile intermediates in synthetic applications, for instance, the synthesis of heterocyclic compounds²⁰ and ligands for inorganic complexes.²¹ Accordingly, synthesis of 1,2-diketones has been a subject of extensive research and numerous methodologies have been proposed,¹¹ mainly by oxidation of ketones or α -functionalized ketones,^{12,22e} 1,2-diols,^{12f,23} alkynes,^{20g,24} olefins,²⁵ epoxides,²⁶ and 1,2-dihalides²⁷ and also by other miscellaneous methods.²⁸ We envision that the new findings herein reported will find broad utility in organic synthesis.

Experimental Section

Typical Procedure for the Reaction of α -Oxo Acid Chlorides with Organostannanes: The Reaction of Phenyl-2-oxoacetyl Chloride (1a) with Allyltri-n-butylstannane (2A). A mixture of phenyl-2-oxoacetyl chloride 1a (85 mg, 0.51 mmol) and allyl(tri-nbutyl)stannane (2A, 0.15 mL, 0.48 mmol) in toluene (4 mL) was heated for 3 h at 110 °C. After cooling to room temperature, the mixture was analyzed by ¹H NMR spectroscopy by using 1,1,2,2tetrachloroethane (9.2 mg) added as an internal standard. Then the reaction mixture was diluted with methyl tert-butyl ether (10 mL) and a 5 mL portion of a saturated aqueous KF solution (ca. 10 wt %) was added. The organic layer was separated from the resulting suspension. Another 5 mL portion of the KF solution was added and the mixture was processed similarly. The organic layer separated from the second KF treatment was dried over Na₂SO₄, filtered, and evaporated. The residue was subjected to preparative TLC (silica gel, hexane/acetone = 85/15) to give 1-phenylpent-4-

(21) (a) Mohr, B.; Enkelmann, V.; Wegner, G. J. Org. Chem. 1994, 59, 635.
 (b) Cornelis, J. Coord. Chem. Rev. 1999, 185-186, 809. (c) Hartl, F.; Aants,

M. P.; Nieuwenhuis, H. A.; van Slageren, J. Coord. Chem. Rev. 2002, 230, 106. (22) (a) Rao, T. V.; Dongre, R. S.; Jain, S. L.; Sain, B. Synth. Commun. 2002, 32, 2637. (b) Chang, S.; Lee, M.; Ko, S.; Lee, P. H. Synth. Commun. 2002, 32, 1279. (c) Katritzky, A. R.; Zhang, D. Z.; Kirichenko, K. J. Org. Chem. 2005, 70, 3271. (d) Okimoto, M.; Takahashi, Y.; Nagata, Y.; Sasaki, G.; Numata, K. Synthesis 2005, 705. (e) Singh, G. S.; Mahajan, D. S. Oxid. Commun. 2005, 28, 555. (f) Hashemi, M. M.; Naeimi, H.; Shirazizadeh, F.; Karimi-Jaberi, Z. J. Chem. Res. 2006, 345.

(23) (a) Khurana, J. M.; Kandpal, B. M. *Tetrahedron Lett.* 2003, 44, 4909.
(b) Jain, S. L.; Sharma, V. B.; Sain, B. *Tetrahedron Lett.* 2004, 45, 1233.

(24) (a) Rogatchov, V. O.; Filimonov, V. D.; Yusubov, M. S. *Synthesis* **2001**, 1001. (b) Yusubov, M. S.; Zholobova, G. A.; Vasilevsky, S. F.; Tretyakov, E. V.; Knight, D. W. *Tetrahedron* **2002**, *58*, 1607. (c) Giraud, A.; Provot, O.; Peyrat, J.-F.; Alami, M.; Brion, J.-D. *Tetrahedron* **2006**, *62*, 7667. (d) Wan, Z. H.; Jones, C. D.; Mitchell, D.; Pu, J. Y.; Zhang, T. Y. J. Org. Chem. **2006**, *71*, 826. (e) Niu, M.; Fu, H.; Jiang, Y.; Zhao, Y. Synthesis **2008**, 2879.

(25) Boyer, J.; Bernardes-Genisson, V.; Nepveu, F. J. Chem. Res. (S) 2003, 507.

(26) (a) Antoniotti, S.; Dunach, E. *Chem. Commun.* **2001**, 2566. (b) Antoniotti, S.; Dunach, E. *Eur. J. Org. Chem.* **2004**, *16*, 3459. (c) Antoniotti, S.; Dunach, E. *J. Mol. Catal. A* **2004**, *208*, 135.

(27) Khan, F. A.; Dash, B. P. J.; Sahu, N. J. Am. Chem. Soc. 2000, 122, 9558.

(28) (a) Kise, N.; Ueda, N. Bull. Chem. Soc. Jpn. 2001, 74, 755. (b) Saikia,
P.; Laskar, D. D.; Prajapati, D.; Sandhu, J. S. Tetrahedron Lett. 2002, 43, 7525.
(c) Wanga, X.; Zhang, Y. Tetrahedron 2003, 59, 4201. (d) Chang, C.-J.; Kumar,
M. P.; Liu, R.-S. J. Org. Chem. 2004, 69, 2793. (e) Voronkov, M. G.; Belousova,
L. I.; Vlasov, A. V.; Vlasova, N. N. Russ. J. Org. Chem 2008, 44, 929.

^{(17) (}a) Imada, Y.; Mitsue, Y.; Ike, K.; Washizuka, K.; Murahashi, S.-i. Bull. Chem. Soc. Jpn. 1996, 69, 2079. (b) Pirrung, M. C.; Tepper, R. J. J. Org. Chem. 1995, 60, 2461. (c) Taylor, M. J.; Hoffman, T. Z.; Yli-Kauhaluoma, J. T.; Lerner, R. A.; Janda, K. D. J. Am. Chem. Soc. 1998, 120, 12783. (d) Marziano, N. C.; Ronchin, L.; Tortato, C.; Zingales, A.; Scantamburlo, L. J. Mol. Catal. A 2005, 235, 17.

^{(18) (}a) Fuji, K.; Ueda, M.; Sumi, K.; Fujita, E. J. Org. Chem. **1985**, 50, 662. (b) Heaney, F.; Fenlon, J.; McArdle, P.; Cunningham, D. Org. Biomol. Chem. **2003**, 1, 1122.

 ^{(19) (}a) Angelastro, M. R.; Mehdi, S.; Burkhart, J. P.; Peet, N. P.; Bey, P.
 J. Med. Chem. 1990, 33, 11. (b) Nicolaou, K. C.; Gray David, L. F.; Tae, J.
 J. Am. Chem. Soc. 2004, 126, 613.

⁽²⁰⁾ Review: Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford, UK, 1996. (a) 1,2,4-Triazines: Taylor, E. C.; Macor, J. E.; French, L. G. J. Org. Chem. 1991, 56, 1807. (b) Piperazines: Nantz, M. H.; Lee, D. A.; Bender, D. M.; Roohi, A. H. J. Org. Chem. 1992, 57, 6653. (c) Isoquinolones: Kiselyov, A. S. Tetrahedron Lett. 1995, 36, 493. (d) Imidazoles: Barta, T. E.; Stealey, M. A.; Collins, P. W.; Weier, R. M. Bioorg. Med. Chem. Lett. 1998, 8, 3443. (e) Aza-quinolizinium type compounds: Martineez-Barrasa, V.; Burgos, C.; Izquierdo, M. L.; Alvarez-Builla, J.; Vaquero, J. J. Tetrahedron Lett. 1999, 40, 4115. (f) Quinoxalines and pyrazines: Zhao, Z. J.; Wisnoski, D. D.; Wolkenberg, S. E.; Leister, W. H.; Wang, Y.; Lindsley, C. W. Tetrahedron Lett. 2004, 45, 4873. (g) Dehydrorotenoid: Tummatorn, J.; Khorphueng, P.; Petsom, A.; Muangsin, N.; Chaichitc, N.; Roengsunran, S. Tetrahedron 2007, 63, 11878. (h) Rong, F.; Chow, S.; Yan, S. Q.; Larson, G.; Hong, Z.; Wu, J. Bioorg. Med. Chem. Lett. 2007, 17, 1663.

ene-1,2-dione **3aA** (81 mg, 0.46 mmol, 96% isolated yield) as pale yellow oil. ¹H NMR δ 7.99 (dd, J = 1.07, 8.3 Hz, 2H, *o*-Ph), 7.65 (t, J = 7.1 Hz, 1H, *p*-Ph), 7.54–7.39 (m, 3H, *m*-Ph and HHC=CH, overlapped), 7.01 (ddt, ³ $J_{\text{HH-trans}} = 16.0$ Hz, ³ $J_{\text{HH}} = 6.8$, ³ $J_{\text{HH-criss}} =$ 10.1 Hz, 1H, HHC=CH), 6.48 (dd, ³ $J_{\text{HH}} = 1.5$ Hz, ³ $J_{\text{HH-trans}} = 16.0$ Hz, 1H, HHC=CH), 2.02 (d, ³ $J_{\text{HH}} = 6.8$ Hz, 2H, COCH₂); ¹³C{¹H} NMR δ 194.2 (CO), 194.0 (CO), 151.5 (COCCC), 135.0 (COCCC), 133.1 (*ipso*-Ph), 130.4 (*o*-Ph), 129.2 (*m*-Ph), 129.0 (*p*-Ph), 19.6 (COCCCC); IR (neat, cm⁻¹) 1674 (br, ν_{CO}), 1624 ($\nu_{\text{C=C}}$); GCMS (70 eV) *m*/*z* (% rel intensity) 174 (12, [M]⁺), 105 (100), 77 (12), 69 (21); HRMS (EI) calcd for C₁₁H₁₀O₂ 174.0681, found 174.0684. For ¹H and ¹³C NMR spectra, see appendices 3 and 4 in the Supporting Information.

Reaction of Oxalyl Chloride with Phenyltri-*n*-butylstannane. To oxalyl chloride (63.0 mg, 0.496 mmol) and toluene (3 mL) placed in a 20 mL Schlenk tube was added phenyltri-*n*butylstannane (368 mg, 1.00 mmol) and the mixture was heated at 110 °C for 5 h. GC analysis with tetradecane (6.3 mg) as internal standard revealed the formation of benzil in 89% yield.

Synthesis of 1,2-Diphenylbut-3-yne-1,2-dione (3aD) by the Reaction of Oxalyl Chloride with Phenyltri-*n*-butylstannane Followed by (Phenylethynyl)tri-*n*-butylstannane. At 60 °C, to

oxalyl chloride (62.8 mg, 0.498 mmol) and toluene (5 mL) placed in a 20 mL Schlenk tube was added a solution of phenyltri-*n*butylstannane (185 mg, 0.504 mmol) in toluene (2 mL) slowly over a period of 2 h by using a syringe pump and the mixture was heated for another 2 h at that temperature. Subsequently, (phenylethynyl)tri*n*-butylstannane (199 mg, 0.509 mmol) was added in one portion and the mixture was heated for an additional 3 h. GC analysis with tetradecane (11.3 mg) as internal standard revealed the formation of **3aD** in 78% yield along with benzil in 14% yield.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (No. 18065008) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and by a research fellowship to T.K. from the Japan Society for the Promotion of Science and Technology.

Supporting Information Available: Experimental details and spectral data of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

JO802814R